
84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

1

Software Specifications

Interprocess Communications, Redstone dp3

Checkout and Launch Control System (CLCS)

84K00510-070

84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

2

1. IPC Services

1.1 IPC Services Introduction

1.1.1 IPC Services Overview

IPC Services (IPC) consists of a set of processes and API’s that applications can utilize to receive both internode and

intranode events (messages). IPC provides location transparency, which means it does not require the sender to

know the platform residence of the message receiver. For Redstone, the IPC API’s will be enhanced to generate the

Packet Payload based on parameters sent by the application and conduct its distribution.

SYSTEM APPS USER APPS

APPLICATION SERVICES

SYSTEM SERVICES

- SYSTEM MESSAGES
 - IPC
- DATA LOGGING
- OS
- NETWORK
- UTILITY:
 o INITIALIZATION
 o DISPLAY
 o PRINTING

- NETWORK

SYSTEM SERVICES

GATEWAY

APPLICATIONS

SYSTEM SERVICES SDC API
LON

GATEWAYs DDPs/CCPs HCIs

SDC ROUTING SERVER

SDC

SYSTEM SERVICES OVERVIEW

DCN DCN

SYSTEM APPS USER APPS

APPLICATION SERVICES

SYSTEM SERVICES

- SYSTEM MESSAGES
- IPC
- DATA LOGGING
- OS
- NETWORK
- UTILITY:
 o INITIALIZATION
 o DISPLAY
 o PRINTING
 o POS Login

- SYSTEM MESSAGES
- IPC
- DATA LOGGING
- OS
- NETWORK
- UTILITY:
 o INITIALIZATION
 o DISPLAY
 o PRINTING

SYSTEM SERVICES

- OS
- NETWORK
- UTILITY:
 o INITIALIZATION

RTCN RTCN

BOOT SERVERCM SERVER

SYSTEM SERVICES

- OS
- NETWORK
- UTILITY:
 o INITIALIZATION

CM APPS

1.1.2 IPC Services Operational Description

Applications register with IPC Services via an API call. After registration, applications can send and receive
messages. The delivery message type determines intra-node or inter-node communications. Messages are routed,
via API ‘s, to other applications.

The sending application can also specify whether it wants to block or not in waiting for an acknowledgement or

negative acknowledgment from a send request. An application may specify the time in milliseconds to wait for the

entire send operation to complete. Two types of delivery methods are supported:

84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

3

• Intra-Node Communication

 Intra-Node communication for message distribution between applications executing within the
same platform. Note, if the record option is requested, the message is set out on the network to
the SDC. Refer to Figure 1.

• Inter-Node Communication

Inter-Node communication for message distribution between applications executing on different
platforms. Refer to Figure 2.

INTER PROCESS COMMUNICATION
 (Within Same Platform)

APPLICATION 1

IPC API:

- Registration
- Delivery Type
- etc.

Macros

IPC Header *

Data

NetRegSrvc
 NRS

APPLICATION 2

IPC API:

- Registration
- etc.

Macros

Q
U
E
U
E

IPC Message

PKT PLD Header

NETWORK SERVICES
(CLM/RM)

SEND PACKET PAYLOAD

PACKET_PAYLOAD

(RECORD OPTION SET)

* NOTE: For Redstone, the current ported
 Event Services (ES) Header will be utilized.
 The IPC Header (ES) will be optimized Post
 Redstone.

Figure 1. Intra-Node Communications

Application processes are able to receive messages via the programmatic interfaces. The receiving process can

specify whether it wants to block or not for receipt of a message. If the receiving application chooses to block, it

may specify the time in milliseconds to wait for an event to be received. Messages will be received in priority order

at the priority specified by the sender

84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

4

INTER PROCESS COMMUNICATION
 (Remote Platform)

APPLICATION

IPC API:

- Registration
- Delivery Type
- etc.

Macros

IPC Header

Data

NetRegSrvc
 NRS

APPLICATION

IPC API:

- Registration
- etc.

Macros

Q
U
E
U
E

PKT PLD Header

NETWORK SERVICES
(CLM/RM)

SEND PACKET PAYLOAD

PACKET_PAYLOAD
NETWORK SERVICES

(CLM/RM)

NetRegSrvc
 NRS

IPC Header

Data

Q
U
E
U
E

PKT PLD Header

RECEIVE PACKET PAYLOAD

Figure 2. Inter-Node Communications

1.2 IPC Services Specifications

1.2.1 IPC Services Groundrules

IPC has the following assumptions and constraints:

• IPC will be started by Initialization & Termination Services.

• Routing of application data between networks (DCN to RTCN or vice-versa) will be performed by the
applications and not by IPC.

• IPC Services events are limited in size by the message queue. Message size is a UNIX tunable parameter
that is currently set for approximately 32,000 bytes.

• Applications using IPC Services specify the destination of a message with a service ID (SID). A SID is a
null terminated character string of up to 64 characters.

• Each time an application registers with IPC Services a message queue is created and each application is
limited to 3 message queues. This maximum can be changed by modifying a parameter in an include file.

1.2.2 IPC Services Functional Requirements

The Functional Requirements for IPC are arranged in the following major/minor functions:

1. Register/Deregister
2. Send Events
3. Receive Events

84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

5

1 Registration / Deregistration

1.1 IPC will register an application with IPC upon request.

1.2 IPC will deregister an application with IPC upon request.

1.3 IPC will deregister a terminated application if the application did not deregister prior to

 termination.

2 Send Events

2.1 IPC will provide the capability to generate/build an event for point-to-point communication.

2.2 IPC will acquire the information for generation and distribution of the Packet Payload as per the
RTPS Packet Payload ICD.

2.3 IPC will provide the capability to deliver events between application processes within the same
platform (intranode communication).

2.4 IPC will provide the capability to multicast the same event onto the network if the recording flag is
set.

2.5 IPC will provide the capability to deliver events between application processes on different
platforms (internode communication).

2.6 IPC will provide the capability for an application to send an event to an application residing in a
specific platform.

2.7 IPC will provide the capability to send an event without specifying the receiver’s platform address
(location transparency).

2.8 IPC will support the following delivery methods:

a) Point-to-point

b) Multipoint or multicast.

2.9 IPC will allow an application process to specify the following for a send event request:

a) Blocking – wait on completion of request processing.

b) Non-blocking – immediately return control to sender.

2.10 IPC will allow an application to specify the amount of time in milliseconds that a send request will
wait before timing out on a blocking and non-blocking request.

2.11 IPC will provide error notification to the requesting application when an error is encountered in
processing a send event request.

3 Receive Events

3.1 IPC will provide the capability to receive events from other application processes residing on the
same platform (intranode communication).

3.2 IPC will provide the capability to receive events from other application processes residing on a
different platform (internode communication).

3.3 IPC will allow an application process to specify the following for a receive event request:

a) Blocking – wait until an event is received.

b) Non-blocking – immediately return control to the receiver.

3.4 IPC will provide the capability for an application process to specify the amount of time in
milliseconds that the application process will wait when a blocked or non-blocked receive event
request is issued.

3.5 IPC will provide error notification to the receiver when an error is encountered in processing a
receive event request.

1.2.3 IPC Services Performance Requirements

This section is TBD.

84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

6

1.2.4 IPC Services Interfaces Data Flow Diagrams

This section provides a description and diagram of all of the interfaces to IPC Services.

IPC
Services

Initialization and
Termination

Services

Local Logging
Services

Application

Network Services

UNIX OS

Event Services Request

Request Status

Registration/Deregistration via SAL

Log Data Request via SAL

Request for Time Information

Time Request

Startup Arguments

Terminate Signal

NRS Registration/Deregistration
Request

NRS Search Request

NRS Status

Open/Close Messaging Request

Send/Receive Messaging Request

Messaging Status

Open/Close Connection Request

Send/Receive Connectionless Request

Connectionless Request Status

IPC Services Data Flow Diagram

IPC Services contains interfaces with Applications, Initialization and Termination Services, Network Services,
Local Logging Services, Timing Services (post-Redstone), and System Messaging Services.

Applications register and de-register with IPC Services and use its API’s to send and receive messages.

Initialization and Termination Services starts the es_man process and terminates it when requested.

Network Services handles the setup and breakdown of connection requests. It also provides the lower level network
read and write capabilities.

Timing Services will provide time information (post-Redstone). IPC Services will use UNIX system calls to receive
time information for Redstone.

1.3 IPC Services Design Specification
IPC is comprised of two daemon processes, es_man and es_lan_man, a a number of API’s used by applications to
use the services. The es_man process handles registrations, deregistrations, and cleanup when a process terminates
without deregistering. The es_lan_man process main function is to provide application data distribution by calling
the appropriate Network APIs for remote communications. It also handles local process-to-process communication.

1.3.1 IPC Services Detailed Data Flow

1.3.1.1 IPC Services Detailed Data Flow Diagram – Level 1

This data flow provides a pictorial representation of the data flow between external sources and destinations and the
major and minor functions of IPC Services.

84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

7

INTER-PROCESS COMMUNICATION SERVICE

IPC Service
1.0

DATA FLOW DIAGRAM - LEVEL 1

Hdr &Data

CLM

RM

APPLICATION APPLICATION

IPC Service
1.0

Pkt Hdr &Data

CLM

RM

APPLICATION APPLICATION

 Hdr &Data

CLM
RM

APPLICATION
GATEWAY

Packet Payload (RM Multicast)
Packet Payload (RM Multicast)

SYS SRVC:
 - INIT & TERM
 - DLS

SYS SRVC:
 - INIT & TERM
 - DLS

DDP/CCP/HCI DDP/CCP/HCI

SDC ROUTING SERVER

CLM

RM

Pkt Hdr &Data

AM SDCRECORD DATA

1.3.1.2 IPC Services Detailed Data Flow Diagram - Level 2

84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

8

Node A Node B

Application
1

Application
2

Application
3

Queue

Queue

Queue

Queue

es_lan_man

Network Services

Queue

Network Services

LAN

message

Registration
Request

message
message

Queue

IPC Services Functional Data Flow Diagram

es_man
1.1

1.2

1.1

es_man

1.2

es_lan_man

NRS

NRS

1.3.2 IPC Services External Interfaces

1.3.2.1 Local Log Messages

IPC Services will use Local Logging Services to store messages.

1.3.2.2 IPC Services Display Formats

IPC Services has one graphical interface, es_diag, a diagnostic tool.

1.3.2.3 IPC Services Input Formats

This section is inapplicable to IPC.

1.3.2.4 IPC Services Recorded Data

This section is inapplicable to IPC.

1.3.2.5 IPC Services Printer Formats

This section is inapplicable to IPC.

84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

9

1.3.2.6 Interprocess Communications (IPC)

The following diagrams show the structure of IPC Services events

1.3.2.6.1IPC Services Messages
The following diagram shows the structure of the standard IPC Services message.

Figure 3. Intra-node message layout

Figure 4. Inter-node message layout1

1 For Redstone only, the ES event header will be removed prior to sending the message on the network.

ES event header
(see figure 5)

data portion
of the event

32,000 Bytes
(UNIX tunable

Packet Payload header

ES event header
(see figure 5)

data portion
of the event

32,000 Bytes
(UNIX tunable

84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

10

1.3.2.6.2IPC Services Header
The following diagram shows the structure of the standard IPC Services header. It is used on all point-to-point
messages and on packets to pass them between IPC daemons within a node.

0 1 2 3 4 5 6 7
priority

version msg_type del_type spare1
data_lenevent_id

g_sec

user_area dest_psid
s_sec

lt_seq_no
lt_flagact_id
g_usec
s_usec

Source Service ID
64 bytes + null = 65

Destination Service ID
64 bytes + null = 65

Source node
24 bytes + null = 25

Destination node
24 bytes + null = 25

Client Principle
64 bytes + null = 65

act_type

Server Principle
64 bytes + null = 65

spare2

Unused padding
24 bytes

400 Bytes400 Bytes

Byte Number

Figure 5. IPC Services Header

84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

11

1.3.2.6.3C-C Type 1 Packet Header
The following diagram shows the structure of the C-C Type 1 packet header. IPC is responsible for filling in some
fields and provides macros to the application caller to fill in others.

Dest 1
RSYS

Dest 2
RSYS

No. Bytes

Dest 2
CPU ID

Source
RSYS

40 Bytes

0 1 2 3 4 5 6 7

PT flags

Byte Number

Source
CPU ID

Dest 1
CPU ID

Status/Julian Day GMT

Place Spare Source RefDes Dest 1 RefDes Dest 2 RefDes

Source APP ID Dest 1 APP ID Dest 2 APP ID TID

Routing
Code

Request
ID

Spare

1.3.2.6.4C-C Type 0 Response Packet Header

The following diagram shows the structure of the C-C Type 0 Response packet header. IPC is responsible for filling
in some fields and provides macros to the application caller to fill in others.

84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

12

Dest 1
RSYS

Dest 2
RSYS

No. Bytes

Dest 2
CPU ID

Source
RSYS

40 Bytes

0 1 2 3 4 5 6 7

PT flags

Byte Number

Source
CPU ID

Dest 1
CPU ID

Status/Julian Day GMT

Place Spare Source RefDes Dest 1 RefDes Dest 2 RefDes

Source APP ID Dest 1 APP ID Dest 2 APP ID TID

Response
TID

Completion
Code

Spare

1.3.2.7 IPC Services External Interface Calls

This is the data that is sent to IPC Services modules via a calling mechanism (e.g., API call)

1.3.2.7.1Register/Deregister Functions

1.3.2.7.1.1 The es_registration Function

Description:

The es_register() function allocates memory for the IPC handle, invokes the es_q_create method, registers the

application with NRS --if the application requests, and registers the application with IPC.

Syntax: (ES_Handle *) es_register (char *service_id, int max_events, int flags)

1.3.2.7.1.2 The es_deregistration Function

Description:

The es_deregister() function deregisters the application from IPC, invokes the es_q_destroy method, deregisters

the application from NRS --if the application was registered with NRS, and frees the memory allocated for the ES

Handle.

Syntax: int es_deregister (ES_handle *hand)

1.3.2.7.1.3 The es_set_pl_opt Function

84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

13

Description:

The es_set_pl_opt() function is used by the calling application to enable or disable the sending and receiving of

packet using IPC. To utilize this service the application must be registered with IPC using es_register ().

Syntax: int es_set_pl_opt (ES_handle *hand, char *sid, ES_Psid *psid, ES_PL_Flag flag)

1.3.2.7.2Send Functions

1.3.2.7.2.1 The es_send Function

Description:

The es_send() function is used by the calling application to send an event to another application To utilize this

service, the application must be registered with IPC using es_register (). An event buffer must have been created

and event control parameters such as destination SID must be set. The event data needs to be copied (or built) into

the event buffer.

Syntax:

int es_send (ES_handle *hand, ES_Hdr *event, struct timeval *timeout, int *fail_num, ES_Error error_struct[])

1.3.2.7.2.2 Allocate a Message Buffer

Description:

The ES_GET_EVENT _BUF macro allocates and initializes a IPC message buffer.

Syntax: (int) ES_GET_EVENT_BUF (int size, ES_Hdr *message, void *data)

1.3.2.7.2.3 Allocate a Packet Buffer

Description:

The ES_GET_PL _BUF macro allocates and initializes a IPC message buffer.

Syntax: (int) ES_GET_PL_BUF (int size, ES_Hdr *message, void *data)

1.3.2.7.2.4 Initialize an Message Buffer

Description:

The ES_SET_DEFAULTS macro initializes a IPC message buffer.

84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

14

Syntax: (int) ES_SET_DEFAULTS (ES_Hdr *header)

1.3.2.7.2.5 Initialize an Packet Buffer

Description:

The ES_SET_PL_DEFAULTS macro initializes a IPC packet buffer.

Syntax: (int) ES_SET_PL_DEFAULTS (ES_Hdr *packet)2

1.3.2.7.2.6 Write public data to a message buffer

Description:

These ES_SET macros allow applications to write data to an ES_Hdr structure.

ES_SET_DEST_NODE Sets the destination node field,

ES_SET_DEST_SID Sets the destination service ID field,

ES_SET_DEST_PSID Sets the multicast connection number for multicast sends,

ES_SET_PRIORITY Sets the priority field,

ES_SET_DATA_LEN Sets the data length field,

ES_SET_DEL_TYPE Sets the delivery type for the message,

ES_SET_EVENT _ID Sets the event ID field,

ES_SET_U_AREA Sets the user area field,

ES_SET_CPRINC Sets the client principle field for Kerberos messages, ES_SET_SPRINC

Syntax: ES_SET… (ES_Hdr *header, val)

1.3.2.7.2.7 Write Public Data to a IPC Packet

Description:

These ES_SET_PL macros allow applications to write data to an ES_Hdr structure.

ES_SET_PL_TYPE Sets the payload type field,

ES_SET_PL_LOGGING Sets the payload logging bits,

ES_SET_PL_RESP_XPECT Sets the payload response expected flag,

ES_SET_PL_DEST1_RESP_SYS Sets the payload responsible system for destination 1,

ES_SET_PL_DEST1_CPU_ID Sets the CPU_ID for destination 1,

ES_SET_PL_DEST1_REFDES Sets the payload refdes field for destination 2,

ES_SET_PL_DEST_APP_ID Sets the application ID for destination 1,

ES_SET_PL_DEST2_RESP_SYS Sets the payload responsible system for destination 2,

2 The LOGGING Bits will default to recording (i.e., request logging to SDC) unless specifically set/reset by the
ES_SET_PL_LOGGING macro call.

84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

15

ES_SET_PL_DEST2_CPU_ID Sets the CPU_ID for destination 2,

ES_SET_PL_DEST2_REFDES Sets the payload refdes for destination 1, ES_SET_PL_DEST2_APP_ID Sets the pa

ES_SET_PL_RESPONSE Sets the payload response filed,

ES_SET_PL_ROUTE_CODE Sets the payload routing code,

ES_SET_PL_REQUEST_ID Sets the payload request ID,

ES_SET_PL_RESP_TRAN_ID Sets the payload response transaction ID,

ES_SET_PL_COMP_CODE Sets the payload completion code

Syntax: ES_SET_PL… (ES_Hdr *packet, val)

1.3.2.7.2.8 Copy data into a packet structure

Description:

The ES_SET_PL_DATA macro allows applications to initialize an ES_Hdr structure for packets.

Syntax: ES_SET_PL_DEFAULT (ES_Hdr*packet, void *packet_data, in data_size)

1.3.2.7.3Receive Functions

1.3.2.7.3.1 The es_receive Function

Description:

The es_receive() function is used by the calling application to receive an event from another application To utilize

this service, the application must be registered with IPC using es_register ().

Syntax:

int es_receive (ES_handle *hand, ES_Hdr *event, struct timeval *timeout)

1.3.2.7.3.2 Retrieve Public Data from the IPC Messages

Description:

These ES_GET macros allow applications to retrieve data from an ES_Hdr structure.

84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

16

ES_SET_DEST_NODE Sets the destination node field,

ES_SET_DEST_SID Sets the destination service ID field,

ES_SET_DEST_PSID Sets the multicast connection number for multicast sends,

ES_SET_PRIORITY Sets the priority field,

ES_SET_DATA_LEN Sets the data length field,

ES_SET_DEL_TYPE Sets the delivery type for the message,

ES_SET_EVENT _ID Sets the event ID field,

ES_SET_U_AREA Sets the user area field,

ES_SET_CPRINC Sets the client principle field for Kerberos messages, ES_SET_SPRINC

ES_GET_DATA_PTR Gets a pointer to the data portion of the message,

Syntax: ES_GET_PL… (ES_Hdr *message)

1.3.2.7.3.3 Retrieve Public Data from the IPC Packets

Description:

These ES_GET_PL macros allow applications to retrieve data from an ES_Hdr structure.

ES_GET_PL_DATA_PTR Gets a pointer to the data portion of the packet,

ES_GET_PL_RESPONSEGets the payload response field, ES_GET_PL_DEST1_RESP_SYS, Gets

the responsible system for destination 1, ES_GET_PL_DEST1_CPU_ID Gets the CPU_ID for destination 1,

ES_GET_PL_REFDES1 Gets the refdes for destination 1,

ES_GET_PL_DEST2_RESP_SYS, Gets the responsible system for destination 2,

ES_GET_PL_DEST2_CPU_ID Gets the CPU_ID for destination 2,

ES_GET_PL_REFDES2 Gets the refdes for destination 2,

ES_GET_PL_APP_ID Gets the payload application ID,

ES_GET_PL_ROUTE_CODE Gets the payload routing code,

ES_GET_PL_REQUEST_ID Gets the payload request ID,

ES_GET_PL_TRAN_ID Gets the payload transaction ID,

ES_SET_PL_COMP_CODE Gets the payload completion code, ES_GET_PL_SOURCE_RESP_SYS Gets the pa

application ID

Syntax: ES_GET_PL… (ES_Hdr *packet)

1.3.2.8 IPC Services Table Formats

This section is inapplicable to IPC Services.

1.3.3 IPC Services Test Plan

IPC Services system-level tests may be run in either or both the IDE or SDE environments. These tests are run on
the basic HCI, CCP or DDP platforms. There are no special hardware configurations required.

84K00510-070 Revision: Basic
June 19, 1997

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work.

IPC Services Requirements

17

IPC Services testing also requires a CLCS application or a CLCS like-application test tool that exercises the point-
to-point and multicast delivery methods.

The specific test cases that will be run include:
1. [sending IPC] Multicast send from the HCI to CCP and SDC
2. [sending IPC] Multicast send from the CCP to a Gateway and SDC
3. [sending IPC] Point-to-Point send within an SGI
4. [receiving an IPC] (Multicast) receive at the HCI from the DDP
5. [receiving an IPC] (Multicast) receive at the CCP from the Gateway
6. [command & response packet] Multicast send from the HCI -> CCP -> Gateway;

Gateway response to CCP -> HCI.

